aiphad module

aiphad.aiphad.make_color_list(u_score_list)[source]

create color list for figure

Parameters

u_score_list (numpy.ndarray) – uncertainty score

Returns

hex_color_list – list of hex color

Return type

list

class aiphad.aiphad.pdc_sampler(page_type=None, input_data=None, estimation=None, gamma=None, sampling=None, phase_id_option=None, proposal=None, parameter_constraint=None, prev_point=None, multi_method=None, NE_k=None)[source]

Bases: object

pdc_sampler instance

Parameters
  • page_type (string) – specify page type from “two_variables”, “three_variables”, “ternary_section”, “ternary”, and “quaternary_section”

  • input_data (numpy.ndarray) – label for the phase (“-1” is used at the point with no label)

  • estimation (string) – specify estimation method from ‘LP’ ,’LS’

  • sampling (string) – specify sampling method from ‘LC’, ‘MS’, ‘EA’, and ‘RS’

  • phase_id_option (dict) – label name. e.g. {“Fe”: 0, “Cr”: 1, “Ni”: 2}

  • proposal (integer) – number of proposals

  • parameter_constraint (bool) – whether parameter constraint is used / not used

  • prev_point (list) – previous experimental point

  • multi_method (string) – specify multi uncertainty score option from ‘OU’ or ‘NE’

  • NE_k (integer) – exclusion of NE_k nearest neighbors from proposals

calculate()[source]

calculate with machine learning method (label spreading or label propagation) which is specified by user

Returns

  • lp_model (sklearn.semi_supervised._label_spreading.LabelSpreading)

  • or

  • sklearn.semi_supervised._label_propagation.LabelPropagation

cross_selection(prev_data, unlabeled_index_list, data_list)[source]

use option to fix one variable for proposals

Parameters
  • prev_data (numpy.ndarray) – previous experimental point

  • unlabeled_index_list (list) – indexces of uncertain points

  • data_list (numpy.ndarray) – all data points

Returns

  • candidate_index_list (list) – Candicate indexes will be return if there are candidate points such that one variable is not changed.

  • unlabeled_index_list (list) – Unlabeled indexes will be return if there are no candidate points such that one variable is not changed.

fit(X=[], y=[])[source]

perform phase diagram estimation using the label propagation method for inputted X and y

Parameters
  • X (numpy.ndarray) – data points in phase diagram

  • y (numpy.ndarray) – label for the phase (“-1” is used at the point with no label)

make_data(reader)[source]

create label and numeric data from input file or array then convert data list (e.g. a, b, c points to x, y points)

Parameters

reader (_csv.reader) – all inputs. (input from csv file or array)

make_data_labelbefore(reader)[source]

create label and numeric data from input file or array

transform from compositions to Cartesian coordinates

Parameters

reader (_csv.reader) – all inputs (input from csv file or array)

make_label()[source]

create label automatically depending on input file or value, specifined label or not

make_label_list(phase_id_dict, label_list_text)[source]

make label data before learning

Parameters
  • phase_id_dict (dict) – list of label

  • label_list_text (dist) – data of label (”” is used for no label, “”)

output_res()[source]

make variables for outputs

postprocessing(lp_model)[source]

perform output processing for specified model attributes

preprocessing(X, y)[source]

make learning data and standardized data

us()[source]

calculate uncertainty score by EA, LC, MS, and RS method which is specified by user

us_EA()[source]

calculate uncertainty score by EA

us_LC()[source]

calculate uncertainty score by LC

us_MS()[source]

calculate uncertainty score by MS

us_RS()[source]

calculate uncertainty score by RS